
S

Variables and Objects
How to complicate a simple thing

massimo.marchi@unimi.it

mailto:Massimo.marchi@unimi.it

Computer Memory

S The RAM can be viewed as a
ribbon of bytes, each one
composed by 8 bit

S Any data (sound, table, image,
etc.) have to be translated into a
sequence of bytes

S Any cell can be reached, for read
or write operations, by its
address which is its position on
the ribbon

1 0 1 0Position 0

Position 1

.Position n-1

RAM composed by n
bytes

…….
…….

…….
…….

A bit: it can be set
to a one value of
two: 0 or 1

0 0 0 0

Format Representation

S Any data have to be expressed by a sequence of bytes

S For ex. Unsigned Short Integer: a number from 0 to 255 can be
express as a sequence of 8 bit:
010 = 000000000 , 110 = 000000010 , 210 = 000000100 ,
…. , …. , ….
…. , 25410 = 111111102 , 25510 = 111111112

Base 10: Decimal notation;
number are expressed with

digits from 0 to 9

Base 2: Binary notation;
number are expressed with

digits from 0 to 1

Format Representation2

S For ex. ASCII char: a
limited set of char can
be memorized as a
single byte; the meaning
of any value is defined
by a lookup table:
S ‘A’=65

S ‘a’=97

S ’0’=48

S ‘8’=56

A data in memory

S Ex.: we can
memorize the
sequence of char
‘HOME’ inside
memory from
position 1000 in
this way 0 1 0 0 0 1 1 0

0 1 0 0 1 1 1 1
0 1 0 0 1 1 0 1
0 1 0 0 0 1 0 1

Position 1000
Position 1001
Position 1002
Position 1003

‘H’=7210

‘O’=7910

‘M’=7710

‘E’=6910

Variables in programming

S Variables are «box» with these properties:
S A name which is used to «address» it

S A type which express the set of valid values you can store in it

S A value which is the current value.

Name: response

Type: ASCII char

Variables as Variables

S During the translation from a not-object oriented Hi-Level
language (for ex. C) to Low-level language (Assembly) the
reference of a variable became an address:

char c
c=‘F’

#c will be implemented
with the cell 1000

store ’f ’, 1000

0 1 0 0 0 1 1 0Position 1000 ‘F’=7010

the position of the value is ‘fixed’ in the
code and also the type, ie the way in wich
data are accessed

à efficient but not flexible

Variables as References

S In a dynamic typed object oriented Hi-Level language (for
ex. Python) variables are pointer:

c=7

seek for ’c’
‘c’ exists? no, create it
take ‘c’ value pointer
store 7, value pointer

0 0 0 0 0 1 1 1Position 1000 710

the type and the position of the value is
memorized into a table

à flexible but not so efficient

c int 1000

Variable definition table
Any table row
requires several
bytes

The position in
which you can

find the
variable value

The variable
type

the variable
name

Undefined values

S If a variable is a reference, then it
can also point to nothing, i.e. it can
defined but does not have a value:

c=undef

c undef undef

Variable definition table

Often undef value
is coded using the
value 0

The position in
which you can

find the
variable value

The variable
type

the variable
name

There is no value

Orphan Values

S A variable can lost its value:

c=7
c=undef

0 0 0 0 0 1 1 1Position 1000 710

After the second assignment, this value
continue to exists in memory (and waste it)
but its no more accessible; it will be removed
by Garbage Collector…. before or later.

c Int undef 1000 undef

Variable definition table The second
assignment cut
the reference to
the old value

The position in
which you can

find the
variable value

The variable
type

the variable
name

Structured Variables

S A variable can be composed by several inner variables
indexed by a key instead of a number

a=range(5)

0

a array of 5 int 1000

1
2 --> 7

4
3

Position 1000

a(2)=7

The value position of the pointed element can be
calculated by using the index, the type size and

the beginning of the array

Dictionaries

S A variable can be composed by several inner variables, for
example arrays

a={
‘color’ : ‘red’,
‘width’: 100,
‘isActive’: true
}

‘color’

a dict 1000

Position 1000 2000
‘width’ 4001

‘isActive’ 3550

‘red’

string
int

bool

100

Position 2000

Position 3550

Position 4001

Objects

S A Object can be viewed as a
structured variable that bring also
actions other then values.

S Objects are instances of a given
class which defines the internal
structures and the exposed values
and actions.

a brief pseudo-code
class IntList {

the_list: array of int,
append(x){ append_to_the_end(the_list,x) },
show(){ if (the_list is empty) print “Empty”

else foreach e in the_list{ print e} }
}

a_obj=new IntList()
a_obj.show()

Empty
a_obj.append(10)
a_obj.append(3)
a_obj.append(4)
a_obj.show()

10
3
4

The class IntList defines two
method: append and show

The class IntList define an
internal variable ,the_list,
whioch is an array of int

a_obj is an instance of the
class IntList

The method defined by the class IntList can be viewed
as properties of the object a_obj: when a method is
invoked, the execution context is the connected object,
in this case the variable the_list used by the method is
the one defined inside a_obj

Variables exemples in Python

i=4 #the type integer can contains any integer
x=2**200 #integers have no limits, the real memory occupation change follows whats needs
s=‘home’ #a sequence of char
x=[1,2,3] #array of int
x[1]=10 #assignment of 10 to the second element of x: after this statement, it values [1,10,3]

!!!!!! Mutable Object !!!!!!!

In Python variables are objects. If a variable points to a mutable object
Python only copy the pointer not the entire structure:

>>> x=[1, 2, 3]
>>> type(x) #x is pointer a mutable object of type «list»
<class 'list'>
>>> y=x #y is a copy of the pointer x
>>> type(y)
<class 'list'>
>>> x.append(4) # the action append is applied to the object
>>> print(x) # the effect is visible both from x and y
[1, 2, 3, 4] # because they point to the same objec
>>> print(y)
[1, 2, 3, 4]

!!!!!! Mutable Object !!!!!!!2

>>> x=[1, 2, 3]
>>> type(x)
<class 'list'>
>>> y=x.copy() #the method copy duplicate the object
>>> type(y)
<class 'list'>
>>> print(x) #x and y now point to different objects
[1, 2, 3]
>>> print(y)
[1, 2, 3]
>>> x.append(4) #the method append change the first object
>>> print(x)
[1, 2, 3, 4]
>>> print(y) #the second object remain untouched
[1, 2, 3]

